Grants Database

The Foundation awards approximately 200 grants per year (excluding the Sloan Research Fellowships), totaling roughly $80 million dollars in annual commitments in support of research and education in science, technology, engineering, mathematics, and economics. This database contains grants for currently operating programs going back to 2008. For grants from prior years and for now-completed programs, see the annual reports section of this website.

Grants Database

Grantee
Amount
City
Year
  • grantee: University of Minnesota
    amount: $50,000
    city: Minneapolis, MN
    year: 2022

    To work towards an artificial translation system capable of building proteins from a wide range of amino acids

    • Program Research
    • Sub-program Matter-to-Life
    • Investigator Kate Adamala

    To work towards an artificial translation system capable of building proteins from a wide range of amino acids

    More
  • grantee: University of California, San Diego
    amount: $466,451
    city: La Jolla, CA
    year: 2022

    To create a primitive protocell having a simple metabolism by coupling the creation and maintenance of a pH gradient to the synthesis of more complex molecules from simpler precursors

    • Program Research
    • Sub-program Matter-to-Life
    • Investigator Neal Devaraj

    One challenge associated with building a life-like synthetic cell lies in how to power synthetic cell processes. A common mechanism used by natural cells to energize cell activities is the exploitation of an electrochemical gradient across a membrane. This grant funds a project led by Neal Devaraj at the University of California, San Diego to build an artificial system that couples the formation and maintenance of a pH gradient with anabolic chemistry to establish a primitive metabolism in a synthetic cell. Devaraj and his team will use photoacids encapsulated in lipid vesicles as the primitive protocells of this project. The photoacids release hydrogen ions (protons) when exposed to light, leading to an excess of protons within the vesicle. Reagent molecules will diffuse into the vesicle from the surrounding “environment” and become trapped as they acquire an electrical charge by bonding with hydrogen ions inside the proton-rich vesicle. These charged molecules will accumulate within the vesicle due to so-called ion-trapping, a phenomenon whereby a membrane that is permeable to neutral molecules becomes impermeable to charged molecules. The concentrating of reagent molecules within the vesicle will then stimulate an anabolic reaction: synthesis of phospholipids. The synthesized phospholipid molecules are building blocks for cell membranes and developing ways to synthesize these building blocks could prove useful for future efforts to build artificial cells that must be able to grow and divide. Devaraj expects that the synthesized lipids will—driven by hydrophobic interactions—associate into and thereby modify the pre-existing vesicle membrane. Microscopy will be used to characterize changes in membrane morphology, changes that could include membrane growth and division.

    To create a primitive protocell having a simple metabolism by coupling the creation and maintenance of a pH gradient to the synthesis of more complex molecules from simpler precursors

    More
  • grantee: University of California, Berkeley
    amount: $1,999,991
    city: Berkeley, CA
    year: 2022

    To image the nanoscale organization of major processes in cell biology using correlative cryo-fluorescence super resolution microscopy and cryo-electron tomography

    • Program Research
    • Sub-program Matter-to-Life
    • Investigator Gokul Upadhyayula

    Recent improvements in electron microscopy have had a profound impact on cellular biology as they promise to bring a long-held 'holy grail' within reach: the ability to directly visualize nanoscale processes occurring within a cell. This goal—in situ visualization—is important because biological components often change their structure or function when removed from their native cellular environment. This grant supports a project by a team of five principal investigators to build a new type of microscope—a cryo-super-resolution microscope optimized for correlative light- and electron-microscopy (CLEM) that produces 3D snapshots (cryo-electron tomography; cryo-ET)—and to demonstrate the new microscope’s usefulness for the in situ visualization of intracellular structures and processes. Grant funds will support microscope design, construction of the super-resolution microscope, creation of software to run it, and the development of “workflows” defining how to implement CLEM when cryo-ET is the electron-microscopy technique of interest. Additionally, the principal investigators will conduct four demonstration projects in biology that leverage the capacities of the new microscope to obtain in situ structural explanations of a major cellular process. The first project, the clathrin project, seeks to understand force generation during clathrin-mediated endocytosis (CME), the taking-in of matter by invagination of a cell membrane. The second will produce images that improve our understanding of autophagy, the engulfment and degradation of various harmful objects within a cell. The third project seeks to understand the basic mechanisms behind the formation of a primary cilium, a hair-like entity that serves as an important sensory organelle on virtually all animal cells. The fourth project will use microscopy to visualize (polycomb-regulated) changes in chromatin structure during cellular development. The proposed work represents a next-logical-step in the development of electron-microscopy-for-biology and our corresponding ability to study the cell, the most basic unit of life. To help push this emerging technology out to a broad community, information on how to build and use the microscope will be made publicly available and access to the new microscope will be provided to scientists from across the globe through a visitor program.

    To image the nanoscale organization of major processes in cell biology using correlative cryo-fluorescence super resolution microscopy and cryo-electron tomography

    More
  • grantee: University of North Carolina, Chapel Hill
    amount: $1,500,000
    city: Chapel Hill, NC
    year: 2021

    To perform experiments and analysis that test the peptide-RNA origin-of-life scenario for the evolution of present-day proteins

    • Program Research
    • Sub-program Matter-to-Life
    • Investigator Charles Carter

    While we have a handle on the main outline of how life likely evolved on earth, the details remain shaky. It is widely accepted that the essential structures underpinning life on earth—DNA and proteins—originated from simpler substructures, nucleic and amino acids swimming freely in a primordial soup before combining into those complex structures. It’s also widely accepted that nucleic acids paved the way for single-stranded RNA, which doubled-up to become DNA. But just how that sequence of events took place is an area of intense controversy in origin-of-life research. Just how, exactly, did RNA manage to outcompete its rivals and stick around? Charles Carter, an expert in origin-of-life science at the University of North Carolina, Chapel Hill aims bring the debate into the laboratory, exploring the properties and interrelations of RNA and amino acid chains (“peptides”) found in humans. Carter suspects that RNA and peptides coevolved together, a hypothesis that stands in contrast to the current leading theory that highlights RNA as the key molecule. Carter’s hypothesis is grounded in part in the tight bonds RNA and peptides are capable of forming, bonds that require a strong structural similarity that seems unlikely to have happened by chance if they did, in fact, evolve independently. The team will focus on their efforts on 20 RNA-peptide pairs that play an important role in protein synthesis, the critical cell process that uses DNA as a template, to create RNA molecules which, in turn, create proteins, using complex machinery in the cell’s cytoplasm. First, the team will seek to identify ancestral molecules that could have given rise to these contemporary RNA-peptide pairs. Next, they will synthesize copies of those ancestral molecules. Finally, they will use those copies to perform a series of experiments to determine important structural and chemical properties that would be consistent with the RNA-peptide scenario for the origin of life. Answering these questions would not just give us a plausible historical story about how life did emerge on Earth—it would also tell us something more fundamental about how life can emerge, be it on Earth or elsewhere. 

    To perform experiments and analysis that test the peptide-RNA origin-of-life scenario for the evolution of present-day proteins

    More
  • grantee: Harvard University
    amount: $1,500,000
    city: Cambridge, MA
    year: 2021

    To explore the rules of cellular organization and development by determining how cell development is influenced by molecular-scale properties of scaffolding on which cells are grown

    • Program Research
    • Sub-program Matter-to-Life
    • Investigator Donald Ingber

    Humans and nature use radically different principles to solve design problems. When building machines, human engineers tend to think in terms of discrete subunits, each with a unique function, coming together to create something greater—the motherboard, processor, graphics card, hard drive, and RAM combine to create a computer, for instance. Nature, however, works with a different set of design principles. While different parts of an organism certainly have unique functions, those functions are often not realized in discrete subunits but are instead distributed throughout the organism. If we look at systems only through our own approach to design, we might fail to understand biological systems and limit our ability to create in interesting ways.  This grant supports Donald Ingber at Harvard University who, together with a talented team of biologists, is exploring one of nature’s ubiquitous designs: hierarchical self-assembly. In Earth biological life, hierarchical self-assembly is achieved through nucleic acid subunits coming together to form intricate strands of DNA which, in turn, go on to guide cell development and differentiation. Grant funds allow the team to explore how aspects of molecular structure contribute to these critical, wide-ranging functions. First, they will use simulations to design different DNA-based molecular scaffoldings. Next, they will build physical copies of these scaffoldings and take measurements to see how the properties compare in reality. Finally, they will grow cells on the different scaffolding combinations to understand how the underlying structure impacts distributed functions throughout the cell. Ultimately, the set of experiments aims to advance our understanding of self-organization across multiple scales—and how variations in underlying DNA structures can impact functions at the cell, tissue, and organism level.

    To explore the rules of cellular organization and development by determining how cell development is influenced by molecular-scale properties of scaffolding on which cells are grown

    More
  • grantee: University of Washington
    amount: $1,499,287
    city: Seattle, WA
    year: 2021

    To realize the first de novo designed multicomponent artificial biomolecular machine

    • Program Research
    • Sub-program Matter-to-Life
    • Investigator David Baker

    Living systems rely on nanoscale molecular “machines”, many of them proteins, to perform a range of essential tasks such as transporting molecular cargo from place to place within cells, causing muscles to contract, and copying genetic information. Developing the ability to build such machines from scratch is a longstanding goal at the interface of biology, physics, chemistry, and engineering. While researchers are now able to synthesize a wide range of complex protein structures, the molecular machines we're currently able to build pale in comparison those used by living systems. The big difference is that while we've largely mastered the ability to synthesize static nanoscale structures, we don't yet know how to build biomolecular machines, structures capable of the complex mechanical motions that power advanced functionality at the nanoscale. This grant funds a project by a team led by David Baker at the University of Washington to create the first artificial protein machines designed from scratch. The team proposes to build rotary molecular motors consisting of self-assembled axle and ring nanostructures that use chemical and/or light energy to perform mechanical work. Baker will attempt to build a nanoscale rotary motor that will be realized via two primary efforts: design of self-assembling axle & ring nanostructures, and the coupling of relative motion (ring about axle) to the consumption of chemical energy by introduction of catalytic sites at the interface between the axle & ring components. Nanoscale imaging, mass spectrometry, and molecular manipulation will be used to verify the designed structures and their functionality.  If successful, the project has the potential to launch a new field—de novo design of biomolecular machines—whereby different inputs (chemicals, light, electrical potentials) are coupled to molecular systems to enable mechanical motions that provide a new way to manipulate matter on the atomic scale. Success would also represent a vast improvement in our understanding of nature's biomolecular machines and of the cellular biology they facilitate.

    To realize the first de novo designed multicomponent artificial biomolecular machine

    More
  • grantee: Johns Hopkins University
    amount: $1,500,000
    city: Baltimore, MD
    year: 2021

    To understand the basic properties of biomolecular condensates based on DNA/RNA and to control condensate properties, interactions, and dynamic responses using nucleic acid circuits

    • Program Research
    • Sub-program Matter-to-Life
    • Investigator Rebecca Schulman

    Compartments, i.e., discrete spatial regions, are important to life. Cells use them to store molecules for later use and to promote biochemistry by keeping molecules close to one another. Life typically compartmentalizes via walls built from lipid membranes, but biologists have discovered that life also employs a membrane-free approach to compartmentalization. Rather than relying on a wall to demarcate what's inside vs outside of a compartment, life can instead employ phase-transitions, changes in the state of matter (e.g., liquid or solid), to segregate molecules. Envision a gel-like region of closely interacting chemicals within a large liquid-like region of a cell. These phase-change compartments are called biomolecular condensates. They are ubiquitous in living systems and important to cellular function. Condensates have been identified that sequester damaged proteins and orchestrate chromosome separation during cell division, and they've also been implicated in human diseases such as Alzheimer’s. This grant funds work by a team led by Rebecca Shulman at Johns Hopkins University who are attempting to understand and ultimately control condensates as a step towards an improved understanding of compartmentalization that could shed light on the matter-to-life transition. Condensates appear well-positioned for this purpose. On the one hand they share many core functions with cells. Condensates naturally form, grow, dissolve, fuse, and divide. On the other, they are vastly simpler, biomechanically, than cells themselves, allowing researchers to investigate these core activities without the complicating internal structure present in natural cells. The work will focus on nucleic acid-based condensates, condensates where the nucleic acid polymers DNA and RNA are the functional elements that condense or otherwise control the phase transition between a condensate and its exterior. The team's approach is to design, build, and characterize nucleic acid condensates. They'll design synthetic DNA templates that produce RNA molecules with the capacity for spontaneous phase separation, testing hypotheses about how aspects of polymer design influence the condensation process. They'll use optical microscopes and other tools to achieve high-throughput characterization that leads to phase diagrams that summarize condensate properties under varying conditions (temperature, different condensing macromolecules, various solution-phase buffer-molecules). They'll also develop molecular signals that cause distinct condensates to mix or demix with one another, or which cause one type of condensate to expel molecules that signal another condensate to perform some function. These studies will provide insights into how condensates can be used to transport "cargo," chemicals that are not essential to the condensation itself but are instead stored or transported by the condensate. If successful, the project could form the foundation of a new discipline of condensate engineering, one that could open new routes to chemical synthesis, advance our understanding of natural cells, lead to new types of intracellular organelles, and provide insights into how matter transitions to life.

    To understand the basic properties of biomolecular condensates based on DNA/RNA and to control condensate properties, interactions, and dynamic responses using nucleic acid circuits

    More
  • grantee: Massachusetts Institute of Technology
    amount: $1,500,000
    city: Cambridge, MA
    year: 2021

    To explore how nonequilibrium dynamics can structure biological systems across scales from molecules to ecosystems

    • Program Research
    • Sub-program Matter-to-Life
    • Investigator Jeff Gore

    Nonequilibrium dynamics is a thriving sub-field within physics that seeks to identify the principles underlying complex spatiotemporal patterns that arise in far from equilibrium systems. Living biological organisms are one important subclass of systems far from equilibrium, yet, due to their complexity and variety, they have remained relatively understudied by theorists and experimentalists alike. As such, significant questions exists both about the extent to which methods of nonequilibrium dynamics can be used to identify laws governing pattern formation and regularities in biological organisms. Funds from this grant support Jeff Gore, Nikta Fakhri, and Jörn Dunkel of MIT in a series of projects that will begin to examine whether and how nonequilibrium dynamics might be used as an organizing framework for understanding how ordered biological phenomena arise and evolve across a variety of scales. Topics to be explored by the team include the role of topology and topological defects in triggering order-enhancing processes in starfish cells; the assembly of ordered structures of colloidal molecules by motile bacteria; and how spatial distribution affects the evolution and ecology of microbe populations. In addition to knowledge gained, the project will involve the development and deployment of new imaging and theoretical analysis tools, expanding the available methods for the thermodynamic study of biological systems.

    To explore how nonequilibrium dynamics can structure biological systems across scales from molecules to ecosystems

    More
  • grantee: Georgia Tech Research Corporation
    amount: $1,479,458
    city: Atlanta, GA
    year: 2021

    To work towards demonstrating open-ended evolution using synthetic molecular systems

    • Program Research
    • Sub-program Matter-to-Life
    • Investigator Nicholas Hud

    To work towards demonstrating open-ended evolution using synthetic molecular systems

    More
  • grantee: University of North Carolina, Chapel Hill
    amount: $1,586,250
    city: Chapel Hill, NC
    year: 2021

    To create artificial living systems that mimic the shape-dependent signaling of natural cells

    • Program Research
    • Sub-program Matter-to-Life
    • Investigator Ronit Freeman

    Natural cells routinely use shape as a vector for acquiring and disseminating information about their environment.  Detecting the shape of a cell they have encountered can impart important information about their neighbor, and thus inform what sort of response would be most adaptive.  The underlying mechanisms that allow organisms to process this topological information, however, are not well understood.  This grant funds a multi-disciplinary a team led by Ronit Freeman at the University of North Carolina at Chapel Hill to better understand these mechanisms by attempting to create an artificial cell-like entity that mimics natural cells’ ability to detect shape.  Grant funds will support three interrelated research efforts. We know that cells use proteins to detect the shape of fellow cells, but the proteins that perform this function can be 10 to 100 times smaller than the cells they are measuring.  How these natural systems bridge that length gap is poorly understood.  Using advanced atomic scale microscopy, Freeman’s team will observe the behavior and structure of these shape-detecting proteins and attempt to reverse engineer synthetic versions that could perform similar functions in a synthetic cell. A second effort will focus on signal transduction, the process of converting shape data collected at the cell membrane into physical and biochemical signals that can be passed to a cell’s interior.  The research team will attempt to create synthetic pathways that mimic signal transduction mechanisms thought to operate in natural cells, allowing them to use detected topological information to effect changes in behavior of the synthetic cell itself.  Third, the team will use advanced techniques to model how topological information can spread through communities of cells, affecting the behavior or characteristics of entire cell collectives.  Such modeling has, to date, mainly confined itself to the chemical aspects of cellular communication. Freeman and her team will expand these efforts, incorporating physical variables such as the flow of mass and momentum, membrane elasticity, flow across interfaces, and cell deformation into their model.

    To create artificial living systems that mimic the shape-dependent signaling of natural cells

    More
We use cookies to analyze our traffic. Please decide if you are willing to accept cookies from our website.